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Abstract. The structure of NbO2 at 295K has been ex- 
amined by profile analysis of powder neutron diffrac- 
tion data. Space group I41/a, a= 13.696 (1), c=5.981 
(I) A. The structure can be described as a superstructure 
with a subcell of the rutile type. The Nb atoms occur 
in pairs, and an antiferroelectric displacement of Nb 
results in a tilting of the Nb-Nb pairs along c. 

Introduction. NbO2 undergoes a semiconductor-metal 
transition at approximately 1070K accompanied by a 
change in crystal structure (Rao, Ramma Rao & Rao, 
1973). Nb-Nb pairing and vibrational mode softening 
are considered to be important factors in determining 
the mechanism of the transition (Shapiro, Axe, Shi- 
rane & Raccah, 1974). The structure of the low-temper- 
ature semiconducting phase was determined by X-ray 
diffraction (Marinder, 1962). The structure can be 
described as a superstructure with a subcell of the 
rutile type in which chains of edge-sharing NbO6 octa- 
hedra are cross-linked by corner-sharing. The lattice 
parameters of the tetragonal supercell are related to 
the parameters of the rutile cell, ar and c,, by a=2l/2a r 
and c=2c,. The Nb-Nb  distances along the edge- 
sharing chains are alternately 2.80 and 3.20 A, corre- 
sponding to pairing of the metal atoms. Marinder 
found the NbO6 octahedra to be almost regular with 
average Nb-O distances of 2.05 + 0.03 A, a surprising 
result since edge-sharing and Nb-Nb  bonding might 
produce grossly distorted octahedra. In VO2 for ex- 
ample, which also exhibits metal-metal bonding and a 
semiconductor-metal transition, the V-O distances 
show significant variations (Andersson, 1956). This is 
manifest as an antiferroelectric displacement of the 
metal atoms (Goodenough, 1971; Heckingbottom & 
Linnett, 1962) which leads to a tilting of the Nb-Nb  
pairs along e. The questioh arises whether NbO2 be- 
haves in a similar manner and we have therefore re- 
examined the structure by profile analysis of powder 
neutron diffraction data. 

A polycrystalline sample of NbO 2 was prepared by 
hydrogen reduction of specpure Nb205 (Johnson 
Matthey Chemicals Ltd) at 1600K for 24 h. The stoi- 
chiometry was confirmed as NbO2.00 by gravimetric 
oxidation to Nb205. 

Powder neutron diffraction data were collected at 
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room temperature on the PANDA diffractometer at 
the PLUTO reactor, AERE Harwell. The sample was 
contained in a cylindrical vanadium can of diameter 
10 mm. A mean neutron wavelength of 1.538 A was 
obtained by reflexion from the (511) planes of a Ge mon- 
ochromator at a take-off angle of 90 °. 

The data were analysed by profile analysis of the 
powder neutron diffraction pattern (Rietveld, 1969). 
The space group, I41/a, and the starting values for the 
least:squares refinement were taken from Marinder 
(1962). The neutron scattering length of O was assumed 
to be 0.577 x 10 -14 m (Bacon, 1972) and the scattering 
length of Nb was refined relative to this value. No cor- 
rection for absorption was necessary. Isotropic Debye- 
Waller factors were refined for Nb and O. 

Results and discussion. The refinement converged rap- 
idly to the structural parameters given in Table 1. Ob- 
served and calculated diffraction profiles are shown in 
Fig. 1. The final R based on profile intensities was 
11.46 %. Lattice parameters for the tetragonal cell were 
found to be a=13.696 (1), c=5.981 (1) A; the values 
reported by Marinder are 13.70 and 5.987 A. The final 
value for the scattering length of Nb was 0.708 + 0.008 × 
10 -14 m which compares well with the value of 0.71 
reported by Bacon (1972). 

Table 1. A tomic coordinates and thermal parameters 
for NbOz 

The value in parentheses is the estimated standard deviation 
in the last place. 

x y z B (A') 
Nb(1) 0.116 (1) 0.123 (2) 0.488 (3) 0.55 (10) 
Yb(2) 0"133 (1) 0"124 (2) 0"031 (2) 0"55 (10) 
O(1) 0"987 (1) 0"133 (2) -0"005 (3) 0"35 (8) 
0(2) 0"976 (1) 0"126 (2) 0-485 (3) 0.35 (8) 
0(3) 0"274 (1) 0"119 (2) 0"987 (3) 0"35 (8) 
0(4) 0-265 (1) 0.126 (2) 0.509 (3) 0.35 (8) 

Table 2. Interatomic distances (A)/n NbO2 

The value in parentheses is the estimated standard deviation 
in the last place. 

Nb(1)-Nb(2) 2.74 (2) Nb(l)-O(4") 2"01 (2) 
Nb(1)-Nb(2') 3.26 (2) Nb(2)-O(1) 2.02 (2) 
Nb(1)-O(l ' )  2-10 (2) Nb(2)-O(l ' )  2.06 (2) 
Nb(1)-O(2) 1-93 (2) Nb(2)-O(2") 2.11 (2) 
Nb(1)-O(2') 2.18 (2) Nb(2)-O(3) 1.93 (2) 
Nb(1)-O(3') 2.02 (2) Nb(2)-O(3') 2.23 (2) 
Nb(1)-O(4) 2.04 (2) Nb(2)-O(4') 2"03 (2) 
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Fig. 1. The observed and calculated diffraction profiles for NbO2 (observed profile - dots" calculated profile - smooth curve). 
The difference profile and reflexion positions are also shown. 

The principal structural element in NbO2 is shown 
in Fig. 2 and the main interatomic distances are given x l 
in Table 2. The N b - N b  distances are in agreement with ~ z 
those determined by Marinder but the Nb-O distances y 
are significantly different. The Nb-O distances around 
Nb(1) fall in the range 1.93-2.18 A and those about 
Nb(2) are between 1.93 and 2.23 A. As in VO2, we find Q 
an antiferroelectric displacement of the Nb atoms 
resulting in a tilting of the N b - N b  pairs along e; the 03' 
separation of Nb(1) and Nb(2) when projected along 
e is 0.22 A. The corresponding separation in VO2 is ~ /  
0.32 A. We conclude that the semiconducting phase of 
NbO2 is very similar to that of VO2 and that the 
Goodenough model for the electronic transition ap- , j  
plies equally well to both compounds. Further studies L 
are being undertaken to establish the behaviour of the 
third dioxide of Group Va, TaO2. 
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Fig. 2. The NbO2 structure; a section of the chain of edge- 

sharing NbO6 octahedra. 
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